NOTES | HOME
$$ \newcommand{\RR}{\mathbb{R}} \newcommand{\GG}{\mathbb{G}} \newcommand{\PP}{\mathbb{P}} \newcommand{\PS}{\mathcal{P}} \newcommand{\SS}{\mathbb{S}} \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\CC}{\mathbb{C}} \newcommand{\HH}{\mathbb{H}} \newcommand{\ones}{\mathbb{1\hspace{-0.4em}1}} \newcommand{\alg}[1]{\mathfrak{#1}} \newcommand{\mat}[1]{ \begin{pmatrix} #1 \end{pmatrix} } \renewcommand{\bar}{\overline} \renewcommand{\hat}{\widehat} \renewcommand{\tilde}{\widetilde} \newcommand{\inv}[1]{ {#1}^{-1} } \newcommand{\eqdef}{\overset{\text{def}}=} \newcommand{\block}[1]{\left(#1\right)} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\trace}[1]{\mathrm{tr}\block{#1}} \newcommand{\norm}[1]{ \left\| #1 \right\| } \newcommand{\argmin}[1]{ \underset{#1}{\mathrm{argmin}} } \newcommand{\argmax}[1]{ \underset{#1}{\mathrm{argmax}} } \newcommand{\st}{\ \mathrm{s.t.}\ } \newcommand{\sign}[1]{\mathrm{sign}\block{#1}} \newcommand{\half}{\frac{1}{2}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\dd}{\mathrm{d}} \newcommand{\ddd}[2]{\frac{\partial #1}{\partial #2} } \newcommand{\db}{\dd^b} \newcommand{\ds}{\dd^s} \newcommand{\dL}{\dd_L} \newcommand{\dR}{\dd_R} \newcommand{\Ad}{\mathrm{Ad}} \newcommand{\ad}{\mathrm{ad}} \newcommand{\LL}{\mathcal{L}} \newcommand{\Krylov}{\mathcal{K}} \newcommand{\Span}[1]{\mathrm{Span}\block{#1}} \newcommand{\diag}{\mathrm{diag}} \newcommand{\tr}{\mathrm{tr}} \newcommand{\sinc}{\mathrm{sinc}} \newcommand{\cat}[1]{\mathcal{#1}} \newcommand{\Ob}[1]{\mathrm{Ob}\block{\cat{#1}}} \newcommand{\Hom}[1]{\mathrm{Hom}\block{\cat{#1}}} \newcommand{\op}[1]{\cat{#1}^{op}} \newcommand{\hom}[2]{\cat{#1}\block{#2}} \newcommand{\id}{\mathrm{id}} \newcommand{\Set}{\mathbb{Set}} \newcommand{\Cat}{\mathbb{Cat}} \newcommand{\Hask}{\mathbb{Hask}} \newcommand{\lim}{\mathrm{lim}\ } \newcommand{\funcat}[1]{\left[\cat{#1}\right]} \newcommand{\natsq}[6]{ \begin{matrix} & #2\block{#4} & \overset{#2\block{#6}}\longrightarrow & #2\block{#5} & \\ {#1}_{#4} \hspace{-1.5em} &\downarrow & & \downarrow & \hspace{-1.5em} {#1}_{#5}\\ & #3\block{#4} & \underset{#3\block{#6}}\longrightarrow & #3\block{#5} & \\ \end{matrix} } \newcommand{\comtri}[6]{ \begin{matrix} #1 & \overset{#4}\longrightarrow & #2 & \\ #6 \hspace{-1em} & \searrow & \downarrow & \hspace{-1em} #5 \\ & & #3 & \end{matrix} } \newcommand{\natism}[6]{ \begin{matrix} & #2\block{#4} & \overset{#2\block{#6}}\longrightarrow & #2\block{#5} & \\ {#1}_{#4} \hspace{-1.5em} &\downarrow \uparrow & & \downarrow \uparrow & \hspace{-1.5em} {#1}_{#5}\\ & #3\block{#4} & \underset{#3\block{#6}}\longrightarrow & #3\block{#5} & \\ \end{matrix} } \newcommand{\cone}[1]{\mathcal{#1}} $$

Iterative Methods

Consider the following iteration for solving \(Mx + q = 0\):

\[x_{k+1} = x_k - \inv{P}\block{Mx_k +q}\]

We look for conditions on \(P\) such that the iteration matrix \(B = I - \inv{P}M\) is convergent, that is:

\[\rho(B) < 1\]

TODO convegent matrices

We start by splitting \(M = P - N\) so that \(B = \inv{P}N\), and let \(\lambda\) be an eigenvalue of \(B\) with corresponding eigenvector \(x\), that is:

\[\inv{P}Nx = \lambda x\]

Equivalently:

\[\block{P - M}x = \lambda P x\]

We now look for sufficient conditions for:

\[|\lambda| < 1\]

Case 1: \(M\) is positive definite

In this case, \(x^*Mx >0\) and we may normalize \(x\) so that \(x^*Mx = 1\). \(x\) verifies:

\[x^*\block{P - M}x = \lambda x^*P x\]

We let \(x^*Px = a + ib\) and rewrite the above as:

\[a + ib - 1 = \lambda \block{a + ib}\]

Taking squared modulus on both sides gives:

\[(a - 1)^2 + b^2 = |\lambda|^2 \block{a^2 + b^2}\]

That is:

\[a^2 + b^2 + 1 - 2a = |\lambda|^2 \block{a^2 + b^2}\]

Our convergence condition reduces to \(1 - 2a < 0\), which we rewrite as:

\[x^*Mx < x^*Px + \bar{x^*Px} = x^*\block{P + P^T} x\]

A sufficient condition is then:

\[P + P^T - M > 0\]

Jacobi Iteration

Given a diagonal preconditioner \(P\) and a positive definite matrix \(M\), the above sufficient condition reduces to:

\[2P > M\]

Gauss-Seidel Iteration

Given a positive definite matrix \(M = L + D + L^T\), where \(D\) is diagonal, the Gauss-Seidel preconditioner is \(P = L + D\) and the sufficient convergence condition is:

\[L + 2D + L^T - M = D + M - M = D > 0\]

which is always true for \(M\) positive definite.