NOTES | HOME
$$ \newcommand{\RR}{\mathbb{R}} \newcommand{\GG}{\mathbb{G}} \newcommand{\PP}{\mathbb{P}} \newcommand{\PS}{\mathcal{P}} \newcommand{\SS}{\mathbb{S}} \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\CC}{\mathbb{C}} \newcommand{\HH}{\mathbb{H}} \newcommand{\ones}{\mathbb{1\hspace{-0.4em}1}} \newcommand{\alg}[1]{\mathfrak{#1}} \newcommand{\mat}[1]{ \begin{pmatrix} #1 \end{pmatrix} } \renewcommand{\bar}{\overline} \renewcommand{\hat}{\widehat} \renewcommand{\tilde}{\widetilde} \newcommand{\inv}[1]{ {#1}^{-1} } \newcommand{\eqdef}{\overset{\text{def}}=} \newcommand{\block}[1]{\left(#1\right)} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\trace}[1]{\mathrm{tr}\block{#1}} \newcommand{\norm}[1]{ \left\| #1 \right\| } \newcommand{\argmin}[1]{ \underset{#1}{\mathrm{argmin}} } \newcommand{\argmax}[1]{ \underset{#1}{\mathrm{argmax}} } \newcommand{\st}{\ \mathrm{s.t.}\ } \newcommand{\sign}[1]{\mathrm{sign}\block{#1}} \newcommand{\half}{\frac{1}{2}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\dd}{\mathrm{d}} \newcommand{\ddd}[2]{\frac{\partial #1}{\partial #2} } \newcommand{\db}{\dd^b} \newcommand{\ds}{\dd^s} \newcommand{\dL}{\dd_L} \newcommand{\dR}{\dd_R} \newcommand{\Ad}{\mathrm{Ad}} \newcommand{\ad}{\mathrm{ad}} \newcommand{\LL}{\mathcal{L}} \newcommand{\Krylov}{\mathcal{K}} \newcommand{\Span}[1]{\mathrm{Span}\block{#1}} \newcommand{\diag}{\mathrm{diag}} \newcommand{\tr}{\mathrm{tr}} \newcommand{\sinc}{\mathrm{sinc}} \newcommand{\cat}[1]{\mathcal{#1}} \newcommand{\Ob}[1]{\mathrm{Ob}\block{\cat{#1}}} \newcommand{\Hom}[1]{\mathrm{Hom}\block{\cat{#1}}} \newcommand{\op}[1]{\cat{#1}^{op}} \newcommand{\hom}[2]{\cat{#1}\block{#2}} \newcommand{\id}{\mathrm{id}} \newcommand{\Set}{\mathbb{Set}} \newcommand{\Cat}{\mathbb{Cat}} \newcommand{\Hask}{\mathbb{Hask}} \newcommand{\lim}{\mathrm{lim}\ } \newcommand{\funcat}[1]{\left[\cat{#1}\right]} \newcommand{\natsq}[6]{ \begin{matrix} & #2\block{#4} & \overset{#2\block{#6}}\longrightarrow & #2\block{#5} & \\ {#1}_{#4} \hspace{-1.5em} &\downarrow & & \downarrow & \hspace{-1.5em} {#1}_{#5}\\ & #3\block{#4} & \underset{#3\block{#6}}\longrightarrow & #3\block{#5} & \\ \end{matrix} } \newcommand{\comtri}[6]{ \begin{matrix} #1 & \overset{#4}\longrightarrow & #2 & \\ #6 \hspace{-1em} & \searrow & \downarrow & \hspace{-1em} #5 \\ & & #3 & \end{matrix} } \newcommand{\natism}[6]{ \begin{matrix} & #2\block{#4} & \overset{#2\block{#6}}\longrightarrow & #2\block{#5} & \\ {#1}_{#4} \hspace{-1.5em} &\downarrow \uparrow & & \downarrow \uparrow & \hspace{-1.5em} {#1}_{#5}\\ & #3\block{#4} & \underset{#3\block{#6}}\longrightarrow & #3\block{#5} & \\ \end{matrix} } \newcommand{\cone}[1]{\mathcal{#1}} $$

Frobenius Approximate Inverses

Given a matrix \(A\), we look for its approximate inverse in the sense of the Frobenius norm, restricted to a given matrix subspace \(E\):

\[\argmin{D\in E} \quad \norm{AD - I}^2_F\]

where \(\norm{X}^2_F = \tr(X^TX)\). The problem is a linear least-squares that can be solved by classical methods, but closed-form formula exist for special cases.

Diagonal Matrices

We begin by expanding:

\[\block{AD - I}^T \block{AD-I} = D^T A^TAD - DA^T - AD - I\]

The objective function then simplifies to:

\[\begin{align} f(D) &= \tr(D^T A^TAD) - 2 \tr(AD)\\ &= \tr(A^TAD^2) - 2 \tr(AD) \\ &= d^T \diag(A^TA) d - 2 \diag(A)^Td \end{align}\]

where \(d = \diag(D)\). The solution is simply:

\[d = \frac{\diag(A)}{\diag(A^TA)} = \block{ \frac{A_{ii}}{ \norm{A_i}^2} }_i\]

This preconditioner is cheap to compute, and in practice gives much better results than the diagonal preconditioner. Convergence proof for the Jacobi iteration exist in the case of diagonally-dominant matrices1.

Appendix

Sub-multiplicativity of the Frobenius norm

\[\begin{align} \norm{AB}^2 &= \sum_{i,j} \block{a_i^T b_j}^2 \\ &\leq \sum_{i,j}\norm{a_i}^2\norm{b_j}^2 \quad \text{(Cauchy-Schwarz)}\\ &= \sum_i \norm{a_i}^2 \sum_j \norm{b_j}^2 \\ &= \norm{A}^2 \norm{B}^2 \end{align}\]

References

  1. P. Tarazaga and D. Cuellar, “Preconditioners generated by minimizing norms”, Computers & Mathematics with Applications, vol. 57, no. 8, pp. 1305–1312, 2009.