NOTES | HOME
$$ \newcommand{\RR}{\mathbb{R}} \newcommand{\GG}{\mathbb{G}} \newcommand{\PP}{\mathbb{P}} \newcommand{\PS}{\mathcal{P}} \newcommand{\SS}{\mathbb{S}} \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\CC}{\mathbb{C}} \newcommand{\HH}{\mathbb{H}} \newcommand{\ones}{\mathbb{1\hspace{-0.4em}1}} \newcommand{\alg}[1]{\mathfrak{#1}} \newcommand{\mat}[1]{ \begin{pmatrix} #1 \end{pmatrix} } \renewcommand{\bar}{\overline} \renewcommand{\hat}{\widehat} \renewcommand{\tilde}{\widetilde} \newcommand{\inv}[1]{ {#1}^{-1} } \newcommand{\eqdef}{\overset{\text{def}}=} \newcommand{\block}[1]{\left(#1\right)} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\trace}[1]{\mathrm{tr}\block{#1}} \newcommand{\norm}[1]{ \left\| #1 \right\| } \newcommand{\argmin}[1]{ \underset{#1}{\mathrm{argmin}} } \newcommand{\argmax}[1]{ \underset{#1}{\mathrm{argmax}} } \newcommand{\st}{\ \mathrm{s.t.}\ } \newcommand{\sign}[1]{\mathrm{sign}\block{#1}} \newcommand{\half}{\frac{1}{2}} \newcommand{\inner}[1]{\langle #1 \rangle} \newcommand{\dd}{\mathrm{d}} \newcommand{\ddd}[2]{\frac{\partial #1}{\partial #2} } \newcommand{\db}{\dd^b} \newcommand{\ds}{\dd^s} \newcommand{\dL}{\dd_L} \newcommand{\dR}{\dd_R} \newcommand{\Ad}{\mathrm{Ad}} \newcommand{\ad}{\mathrm{ad}} \newcommand{\LL}{\mathcal{L}} \newcommand{\Krylov}{\mathcal{K}} \newcommand{\Span}[1]{\mathrm{Span}\block{#1}} \newcommand{\diag}{\mathrm{diag}} \newcommand{\tr}{\mathrm{tr}} \newcommand{\sinc}{\mathrm{sinc}} \newcommand{\cat}[1]{\mathcal{#1}} \newcommand{\Ob}[1]{\mathrm{Ob}\block{\cat{#1}}} \newcommand{\Hom}[1]{\mathrm{Hom}\block{\cat{#1}}} \newcommand{\op}[1]{\cat{#1}^{op}} \newcommand{\hom}[2]{\cat{#1}\block{#2}} \newcommand{\id}{\mathrm{id}} \newcommand{\Set}{\mathbb{Set}} \newcommand{\Cat}{\mathbb{Cat}} \newcommand{\Hask}{\mathbb{Hask}} \newcommand{\lim}{\mathrm{lim}\ } \newcommand{\funcat}[1]{\left[\cat{#1}\right]} \newcommand{\natsq}[6]{ \begin{matrix} & #2\block{#4} & \overset{#2\block{#6}}\longrightarrow & #2\block{#5} & \\ {#1}_{#4} \hspace{-1.5em} &\downarrow & & \downarrow & \hspace{-1.5em} {#1}_{#5}\\ & #3\block{#4} & \underset{#3\block{#6}}\longrightarrow & #3\block{#5} & \\ \end{matrix} } \newcommand{\comtri}[6]{ \begin{matrix} #1 & \overset{#4}\longrightarrow & #2 & \\ #6 \hspace{-1em} & \searrow & \downarrow & \hspace{-1em} #5 \\ & & #3 & \end{matrix} } \newcommand{\natism}[6]{ \begin{matrix} & #2\block{#4} & \overset{#2\block{#6}}\longrightarrow & #2\block{#5} & \\ {#1}_{#4} \hspace{-1.5em} &\downarrow \uparrow & & \downarrow \uparrow & \hspace{-1.5em} {#1}_{#5}\\ & #3\block{#4} & \underset{#3\block{#6}}\longrightarrow & #3\block{#5} & \\ \end{matrix} } \newcommand{\cone}[1]{\mathcal{#1}} $$

Euler-Lagrange Equations

  1. Lagrangian
  2. Calculus of Variations
  3. TODO Change of Coordinates
  4. TODO Hamilton-Pontryagin Principle
  5. Notes

Lagrangian

\[\LL(t, q, v) : \RR \times \RR^n \times \RR^n \to \RR\]

Let us consider a smooth curve \(q: \RR \to \RR^n\), the Lagrangian \(\LL\) is evaluated along \(q\) by composing it with:

\[t \mapsto \block{t, q(t), \dot{q}(t)}\]

The action \(S\) of \(\LL\) along \(q\) is a functional that integrates \(\LL\) along the path \(q\) between end-points \(q_0 = q(0)\) and \(q_1 = q(1)\):

\[S: \mathcal{C}^\infty\block{[0, 1], \RR^n} \to \RR, \quad S(q) = \int_{t=0}^{t=1}\LL\block{t, q(t), \dot{q}(t)}.\dd t\]

The action \(S\) computes the cost associated with a given path \(q\). Assuming the end-points are kept fixed, it is natural to ask which curve minimizes the cost. As usual, a necessary condition for a minimizer is to be a critical point of the action:

\[\delta S(q) = 0\]

Calculus of Variations

Let us now consider the space of smooth functions \(\mathcal{C}^\infty\block{[0, 1], \RR^n}\) with fixed end-points \(q_0, q_1\) in more details: it is a vector space of infinite dimension, and it is not too difficult to see that its tangent space is the space of smooth functions with zero end-points. Let \(\delta q\) be such a tangent vector at \(q\), called a variation of \(q\).

By definition, \(\delta S(q).\delta q\) is equal to the directional derivative of \(S\) in direction \(\delta q\), which can be obtained as:

\[\delta S(q).\delta q = \left.\frac{\dd}{\dd \epsilon}S\block{q + \epsilon \delta q} \right|_{\epsilon = 0}\]

Expanding the right-hand side a little bit:

\[\begin{align} \frac{\dd}{\dd \epsilon}S(q + \epsilon \delta q) &=\frac{\dd}{\dd \epsilon} \int_0^1\LL\block{t, q(t) + \epsilon \delta q(t), \dot{q}(t) + \epsilon \delta \dot{q}(t)}.\dd t \\ &= \int_0^1 \frac{\dd}{\dd \epsilon} \LL\block{t, q(t) + \epsilon \delta q(t), \dot{q}(t) + \epsilon \delta \dot{q}(t)}.\dd t \\ &= \int_0^1 \block{\ddd{\LL}{q}.\delta q(t) + \ddd{\LL}{v}.\delta \dot{q}(t)}.\dd t \\ &= \int_0^1 \ddd{\LL}{q}.\delta q(t).\dd t + \int_0^1\ddd{\LL}{v}.\delta \dot{q}(t).\dd t \\ \end{align}\]

Let us now integrate the second term by parts:

\[\begin{align} \int_0^1\ddd{\LL}{v}.\delta \dot{q}(t).\dd t &= \underbrace{\left[\ddd{\LL}{v}.\delta q(t) \right]_0^1}_0 - \int_0^1\frac{\dd}{\dd t}\ddd{\LL}{v}.\delta q(t).\dd t \\ \end{align}\]

So that we finally obtain:

\[\delta S(q).\delta q = \int_0^1\block{\ddd{\LL}{q} -\frac{\dd}{\dd t}\ddd{\LL}{v} } \delta q(t).\dd t\]

But since we look for a critical point, we have \(\delta S(q).\delta q = 0\) for all variations \(\delta q\), which implies1:

\[\ddd{\LL}{q} -\frac{\dd}{\dd t}\ddd{\LL}{v} = 0\]

This equation is known as the Euler-Lagrange equation, rewritten below with more details:

\[\frac{\dd}{\dd t}\ddd{\LL}{v}\block{t, q(t), \dot{q}(t)} = \ddd{\LL}{q}\block{t, q(t), \dot{q}(t)}\]

TODO Change of Coordinates

TODO Hamilton-Pontryagin Principle

\[S(q, v, \lambda) = \int_{t=0}^{t=1}\LL\block{t, q(t), v(t)} - \lambda(t)^T\block{\dot{q}(t) - v(t)}.\dd t\]

Notes

  1. by the fundamental lemma of calculus of variations