$$
\newcommand{\RR}{\mathbb{R}}
\newcommand{\GG}{\mathbb{G}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\PS}{\mathcal{P}}
\newcommand{\SS}{\mathbb{S}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\HH}{\mathbb{H}}
\newcommand{\ones}{\mathbb{1\hspace{-0.4em}1}}
\newcommand{\alg}[1]{\mathfrak{#1}}
\newcommand{\mat}[1]{ \begin{pmatrix} #1 \end{pmatrix} }
\renewcommand{\bar}{\overline}
\renewcommand{\hat}{\widehat}
\renewcommand{\tilde}{\widetilde}
\newcommand{\inv}[1]{ {#1}^{-1} }
\newcommand{\eqdef}{\overset{\text{def}}=}
\newcommand{\block}[1]{\left(#1\right)}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\trace}[1]{\mathrm{tr}\block{#1}}
\newcommand{\norm}[1]{ \left\| #1 \right\| }
\newcommand{\argmin}[1]{ \underset{#1}{\mathrm{argmin}} }
\newcommand{\argmax}[1]{ \underset{#1}{\mathrm{argmax}} }
\newcommand{\st}{\ \mathrm{s.t.}\ }
\newcommand{\sign}[1]{\mathrm{sign}\block{#1}}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\inner}[1]{\langle #1 \rangle}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ddd}[2]{\frac{\partial #1}{\partial #2} }
\newcommand{\db}{\dd^b}
\newcommand{\ds}{\dd^s}
\newcommand{\dL}{\dd_L}
\newcommand{\dR}{\dd_R}
\newcommand{\Ad}{\mathrm{Ad}}
\newcommand{\ad}{\mathrm{ad}}
\newcommand{\LL}{\mathcal{L}}
\newcommand{\Krylov}{\mathcal{K}}
\newcommand{\Span}[1]{\mathrm{Span}\block{#1}}
\newcommand{\diag}{\mathrm{diag}}
\newcommand{\tr}{\mathrm{tr}}
\newcommand{\sinc}{\mathrm{sinc}}
\newcommand{\cat}[1]{\mathcal{#1}}
\newcommand{\Ob}[1]{\mathrm{Ob}\block{\cat{#1}}}
\newcommand{\Hom}[1]{\mathrm{Hom}\block{\cat{#1}}}
\newcommand{\op}[1]{\cat{#1}^{op}}
\newcommand{\hom}[2]{\cat{#1}\block{#2}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\Set}{\mathbb{Set}}
\newcommand{\Cat}{\mathbb{Cat}}
\newcommand{\Hask}{\mathbb{Hask}}
\newcommand{\lim}{\mathrm{lim}\ }
\newcommand{\funcat}[1]{\left[\cat{#1}\right]}
\newcommand{\natsq}[6]{
\begin{matrix}
& #2\block{#4} & \overset{#2\block{#6}}\longrightarrow & #2\block{#5} & \\
{#1}_{#4} \hspace{-1.5em} &\downarrow & & \downarrow & \hspace{-1.5em} {#1}_{#5}\\
& #3\block{#4} & \underset{#3\block{#6}}\longrightarrow & #3\block{#5} & \\
\end{matrix}
}
\newcommand{\comtri}[6]{
\begin{matrix}
#1 & \overset{#4}\longrightarrow & #2 & \\
#6 \hspace{-1em} & \searrow & \downarrow & \hspace{-1em} #5 \\
& & #3 &
\end{matrix}
}
\newcommand{\natism}[6]{
\begin{matrix}
& #2\block{#4} & \overset{#2\block{#6}}\longrightarrow & #2\block{#5} & \\
{#1}_{#4} \hspace{-1.5em} &\downarrow \uparrow & & \downarrow \uparrow & \hspace{-1.5em} {#1}_{#5}\\
& #3\block{#4} & \underset{#3\block{#6}}\longrightarrow & #3\block{#5} & \\
\end{matrix}
}
\newcommand{\cone}[1]{\mathcal{#1}}
$$
Euler-Lagrange Equations
- Lagrangian
- Calculus of Variations
- TODO Change of Coordinates
- TODO Hamilton-Pontryagin Principle
- Notes
Lagrangian
\[\LL(t, q, v) : \RR \times \RR^n \times \RR^n \to \RR\]
Let us consider a smooth curve \(q: \RR \to \RR^n\), the Lagrangian
\(\LL\) is evaluated along \(q\) by composing it with:
\[t \mapsto \block{t, q(t), \dot{q}(t)}\]
The action \(S\) of \(\LL\) along \(q\) is a functional that
integrates \(\LL\) along the path \(q\) between end-points \(q_0 =
q(0)\) and \(q_1 = q(1)\):
\[S: \mathcal{C}^\infty\block{[0, 1], \RR^n} \to \RR, \quad S(q) = \int_{t=0}^{t=1}\LL\block{t, q(t), \dot{q}(t)}.\dd t\]
The action \(S\) computes the cost associated with a given path
\(q\). Assuming the end-points are kept fixed, it is natural to ask
which curve minimizes the cost. As usual, a necessary condition for a
minimizer is to be a critical point of the action:
\[\delta S(q) = 0\]
Calculus of Variations
Let us now consider the space of smooth functions
\(\mathcal{C}^\infty\block{[0, 1], \RR^n}\) with fixed end-points
\(q_0, q_1\) in more details: it is a vector space of infinite
dimension, and it is not too difficult to see that its tangent space
is the space of smooth functions with zero end-points. Let \(\delta
q\) be such a tangent vector at \(q\), called a variation of \(q\).
By definition, \(\delta S(q).\delta q\) is equal to the directional
derivative of \(S\) in direction \(\delta q\), which can be obtained
as:
\[\delta S(q).\delta q = \left.\frac{\dd}{\dd \epsilon}S\block{q + \epsilon \delta q} \right|_{\epsilon = 0}\]
Expanding the right-hand side a little bit:
\[\begin{align}
\frac{\dd}{\dd \epsilon}S(q + \epsilon \delta q) &=\frac{\dd}{\dd \epsilon} \int_0^1\LL\block{t, q(t) + \epsilon \delta q(t), \dot{q}(t) + \epsilon \delta \dot{q}(t)}.\dd t \\
&= \int_0^1 \frac{\dd}{\dd \epsilon} \LL\block{t, q(t) + \epsilon \delta q(t), \dot{q}(t) + \epsilon \delta \dot{q}(t)}.\dd t \\
&= \int_0^1 \block{\ddd{\LL}{q}.\delta q(t) + \ddd{\LL}{v}.\delta \dot{q}(t)}.\dd t \\
&= \int_0^1 \ddd{\LL}{q}.\delta q(t).\dd t + \int_0^1\ddd{\LL}{v}.\delta \dot{q}(t).\dd t \\
\end{align}\]
Let us now integrate the second term by parts:
\[\begin{align}
\int_0^1\ddd{\LL}{v}.\delta \dot{q}(t).\dd t &= \underbrace{\left[\ddd{\LL}{v}.\delta q(t) \right]_0^1}_0 - \int_0^1\frac{\dd}{\dd t}\ddd{\LL}{v}.\delta q(t).\dd t \\
\end{align}\]
So that we finally obtain:
\[\delta S(q).\delta q = \int_0^1\block{\ddd{\LL}{q} -\frac{\dd}{\dd t}\ddd{\LL}{v} } \delta q(t).\dd t\]
But since we look for a critical point, we have \(\delta S(q).\delta q = 0\)
for all variations \(\delta q\), which implies:
\[\ddd{\LL}{q} -\frac{\dd}{\dd t}\ddd{\LL}{v} = 0\]
This equation is known as the
Euler-Lagrange
equation, rewritten below with more details:
\[\frac{\dd}{\dd t}\ddd{\LL}{v}\block{t, q(t), \dot{q}(t)} = \ddd{\LL}{q}\block{t, q(t), \dot{q}(t)}\]
TODO Change of Coordinates
TODO Hamilton-Pontryagin Principle
\[S(q, v, \lambda) = \int_{t=0}^{t=1}\LL\block{t, q(t), v(t)} - \lambda(t)^T\block{\dot{q}(t) - v(t)}.\dd t\]
Notes