Réduction de dimension pour l'animation de personnages

Thèse encadrée par François Faure & Lionel Reveret

Maxime Tournier

Soutenue le 17 Octobre 2011

Animation de personnages

Avatar

PES 2012

OpenSIM

Nombreux usages :

- Films
- Application interactives
- Simulateurs

3 principaux critères :

- Qualité de l'animation
- Degré de contrôle
- Performances de la méthode

Capture de mouvement (MoCap)

Motion graphs, ...

- Capture de mouvement (MoCap)
 - Motion graphs, ...
- Synthèse procédurale
 - Cinématique, Physique

[Yin et al., 2007]

- Capture de mouvement (MoCap)
 - Motion graphs, ...
- Synthèse procédurale
 - Cinématique, Physique
- Méthodes hybrides

[Brand and Hertzmann, 2000]

- Capture de mouvement (MoCap)
 - Motion graphs, ...
- Synthèse procédurale
 - Cinématique, Physique
- Méthodes hybrides

[Brand and Hertzmann, 2000]

Méthodes hybrides

[Unuma et al., 1995]

• e.g. coefficients Fourier

Méthodes hybrides

- Modèle temporel
 - e.g. coefficients Fourier
- Modèle spatial
 - e.g. Analyse en Composantes Principales (ACP)

[Grochow et al., 2004]

Méthodes hybrides

Modèle temporel

e.g. coefficients Fourier

Modèle spatial

 e.g. Analyse en Composantes Principales (ACP)

[Grochow et al., 2004]

Modèles spatiaux : motivations

- Redondances au niveau des postures
- Justification biomécanique
 - synergies musculaires [Tresch and Jarc, 2009]
- Analyse statistique des corrélations

Modèles spatiaux : motivations

- Redondances au niveau des postures
- Justification biomécanique
 - synergies musculaires [Tresch and Jarc, 2009]
- Analyse statistique des corrélations

Objectif : obtenir une description plus compacte des données

Réduction de dimension

- Apprentissage statistique sur données MoCap
- Reparamétrage des postures
- Sélection des variables encodant le plus d'information

Avantages :

- Compression des données
- Restriction des postures lors de l'édition
- Performance

1. Introduction

- 2. Modèle de postures par AGP, compression
- 3. Extension à l'animation physique
- 4. Contrôle du mouvement

5. Conclusion et travaux futurs

1. Introduction

2. Modèle de postures par AGP, compression

- 3. Extension à l'animation physique
- 4. Contrôle du mouvement

5. Conclusion et travaux futurs

- Données de position
 - ACP sur marqueurs MoCap
 - perte de rigidité
 - plusieurs modèles locaux

[Liu and McMillan, 2006]

- Données de position
 - ACP sur marqueurs MoCap
 - perte de rigidité
 - plusieurs modèles locaux
- Données d'orientation
 - ACP sur angles d'Euler
 - problèmes angles d'Euler
 - potentiel en temps de calculs inexploité

[Safonova et al., 2004]

- Données de position
 - ACP sur marqueurs MoCap
 - perte de rigidité
 - plusieurs modèles locaux
- Données d'orientation
 - ACP sur angles d'Euler
 - problèmes angles d'Euler
 - potentiel en temps de calculs inexploité
 - ACP + Processus Gaussiens
 - + extraction de style
 - coûteux
 - nécessite une base de données

[Grochow et al., 2004]

- Données de position
 - ACP sur marqueurs MoCap
 - perte de rigidité
 - plusieurs modèles locaux
- Données d'orientation
 - ACP sur angles d'Euler
 - problèmes angles d'Euler
 - potentiel en temps de calculs inexploité
 - ACP + Processus Gaussiens
 - + extraction de style
 - coûteux
 - nécessite une base de données

[Grochow et al., 2004]

- \neq espace vectoriel !
 - Méthodes linéaires inadaptées

ACP sur
$$S^2$$

- ▶ ≠ espace vectoriel !
 - Méthodes linéaires inadaptées
- Variété différentielle (compacte)
 - Cartes locales : distorsions
 - Distance, géodésiques ...

Carte pour S^2

- ▶ ≠ espace vectoriel !
 - Méthodes linéaires inadaptées
- Variété différentielle (compacte)
 - Cartes locales : distorsions
 - Distance, géodésiques ...
- Groupe de Lie
 - Produit, inverse, exponentielle ...

Carte pour S^2

- ▶ ≠ espace vectoriel !
 - Méthodes linéaires inadaptées
- Variété différentielle (compacte)
 - Cartes locales : distorsions
 - Distance, géodésiques ...
- Groupe de Lie
 - Produit, inverse, exponentielle ...

Carte pour S^2

Domaine récent:

- Moyennes [Moakher, 2002], filtrage [Lee and Shin, 2002]
- Statistiques intrinsèques [Pennec, 2006]
- Analyse en Géodésiques Principales (AGP)

[Fletcher et al., 2003][Sommer et al., 2010]

Analyse en Géodésiques Principales (AGP)

- Applicable à certaines variétés, dont SO(3)
- Utilise des géodésiques au lieu de droites
 - *i.e.* Courbes de longueur localement minimale
- Calcul de moyenne intrinsèque
 - Minimisation de la distance géodésique

ACP

Avantages:

- Invariance en coordonnées
- Paramétrage lisse, non-singulier
- Reconstruction simple

Partie 2: Modèle de postures

- 1. État de l'art
- 2. Approche par AGP
- 3. Application : compression de mouvement

AGP de données de MoCap

Reconstruction:

$$p = \mu \prod_{j=1}^{3n} \exp\left(\alpha_j . \mathbf{v}_j\right)$$

Exemple : marche

Original

Géodésiques

Modèle de postures

2.2. Approche par AGP

Qualité de reconstruction

Erreur moyenne de reconstruction par articulation (degrés), AGP vs ACP Euler:

Données CMU: sujet 86, séquence 3

- AGP stable / changement de coordonnées
- Analyse intrinsèque des postures

Modèle de postures réduit

- Dimension initiale: 75 90
- Sélection des k premiers modes uniquement
- En général $5 \le k \le 25$
- Critère: quantité de variance totale

Nb. géodésiques pour 99% de variance, base complète

Nouveau paramétrage du personnage :

$$\begin{pmatrix} t, q, \alpha_1, \dots, \alpha_k \end{pmatrix}$$
 position orientation coordonnées de posture

- Espace de configuration = $\mathbb{R}^3 \times SO(3) \times \mathbb{R}^k$
- Cinématique directe $x = f(t, q, \alpha)$

- Problème inverse : $(t, q, \alpha) \stackrel{?}{=} f^{-1}(x)$
- Souvent mal-posé
 - Une, plusieurs ou pas de solutions
- Moindres carrés non-linéaires:

$$(t, q, \alpha) = \underset{(t,q,\alpha)\in G}{\operatorname{argmin}} ||x - f(t,q,\alpha)||^2$$

Résolution par l'algorithme de Levenberg-Marquardt

Exemples cinématique inverse

40 degrés de liberté

12 degrés de liberté

Modèle de postures

2.2. Approche par AGP

Exemples cinématique inverse

Suivi

Édition

9 géodésiques

3 cibles de cinématique inverse: centre de gravité + 2 pieds
Partie 2: Modèle de postures

- 1. État de l'art
- 2. Approche par AGP
- 3. Application : compression de mouvement

Motivations :

- Stockage et transmission de données MoCap
- Évaluation d'un modèle de postures
- Représentation permettant l'édition

Base de données, clustering

- nécessite base de données

[Arikan, 2006]

Compression : état de l'art

Base de données, clustering

- nécessite base de données

- Compression par ondelettes
 - + rapide
 - angles d'Euler

[Beaudoin et al., 2007]

Compression : état de l'art

Base de données, clustering

- nécessite base de données

- Compression par ondelettes
 - + rapide
 - angles d'Euler
- ACP sur marqueurs MoCap, par morceaux
 - + segmentation automatique
 - perte de rigidité

[Liu and McMillan, 2006]

Notre approche :

- Utiliser la cinématique inverse par AGP
- Stocker :
 - Paramètres du modèle réduit
 - Trajectoires extrêmités + position/orientation absolues
- Compression des trajectoires par ondelettes

Résultats

Motion Compression using Principal Geodesic Analysis

M. Tournier, X. Wu, N. Courty, E. Arnaud, L. Reveret, Eurographics 2009

Modèle de postures

- Très bons taux de compression
- Possibilité d'édition, temps-réel
- Modèle réduit par AGP = compact

Travaux futurs:

- Compression plus adaptée des trajectoires
- Segmentation des données, modèles locaux

- Modèle de postures réduit par AGP
- Cinématique directe/inverse
- Algorithme de compression de mouvement

1. Introduction

- 2. Modèle de postures par AGP, compression
- 3. Extension à l'animation physique
- 4. Contrôle du mouvement

5. Conclusion et travaux futurs

Motivations :

- Accroître le réalisme des animations, généralisation
- Permettre une meilleure interactivité
- Évaluer les performances du modèle AGP

État de l'art: réduction de dimension physique

Locomotion modale

- + modes mécaniquement indépendants
- restreint à la locomotion

[Kry et al., 2009]

État de l'art: réduction de dimension physique

Locomotion modale

- + modes mécaniquement indépendants
- restreint à la locomotion

Analyse statistique de couples

- + identifie sous-espace non-actionné
- nécessite dynamique inverse
- uniquement haut du corps, perturbations

[Ye and Liu, 2008]

État de l'art: réduction de dimension physique

Locomotion modale

- + modes mécaniquement indépendants
- restreint à la locomotion

Analyse statistique de couples

- + identifie sous-espace non-actionné
- nécessite dynamique inverse
- uniquement haut du corps, perturbations

[Ye and Liu, 2008]

Exprimer la physique dans le modèle réduit AGP ?

Approches classiques

Coordonnées maximales

Membres rigides a priori indépendants

+ contraintes

Formalisme Lagrangien

Dynamique formulée dans des coordonnées

adaptées au problème

Approches classiques

Coordonnées maximales

Membres rigides a priori indépendants

- + contraintes
- + Standard, flexible
- + Forces de liaison
- Dérive numérique
- Mal adapté au modèle réduit AGP

Formalisme Lagrangien

Dynamique formulée dans des coordonnées

adaptées au problème

+ Pas de dérive

+ S'adapte facilement au modèle réduit AGP

- Nécessite un modèle dynamique dédié

Approches classiques

Coordonnées maximales Membres rigides *a priori* indépendants + contraintes + Standard, flexible + Forces de liaison - Dérive numérique - Mal adapté au modèle réduit AGP

Formalisme Lagrangien

Dynamique formulée dans des coordonnées

adaptées au problème

+ Pas de dérive

+ S'adapte facilement au modèle réduit AGP

- Nécessite un modèle dynamique dédié

$$E = \frac{1}{2}mR\dot{ heta}^2 + \frac{1}{2}mg.h(heta) = ext{constante}$$

$$\underbrace{\delta \int_{a}^{b} \mathcal{L}(q, \dot{q}).dt = 0}_{a}$$

Conservation de l'énergie

Intégration classique

 \Rightarrow

$$\delta \int_{a}^{b} \mathcal{L}(q, \dot{q}) . dt = 0$$

Conservation de l'énergie

 $\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} = \frac{\partial \mathcal{L}}{\partial q}$

Équation différentielle

Intégration classique

 \Rightarrow

$$\delta \int_{a}^{b} \mathcal{L}(q, \dot{q}) . dt = 0$$

Conservation de l'énergie

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} = \frac{\partial \mathcal{L}}{\partial q}$$

0 ~

 \Rightarrow

$$\ddot{q}_{n+1} = \dots$$

Intégration classique

$\int_{a}^{b} \mathcal{L}(q,\dot{q}).dt = 0 \qquad \Rightarrow$ δ

Conservation de l'énergie

 $\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} = \frac{\partial \mathcal{L}}{\partial q}$

Équation différentielle

Conservation?

$$\ddot{q}_{n+1} = \dots$$

 \Rightarrow

Intégration classique

$\delta \int_{a}^{b} \mathcal{L}(q, \dot{q}) . dt = 0 \qquad \Rightarrow \qquad$

Conservation de l'énergie

∜

$$\underbrace{\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}} = \frac{\partial \mathcal{L}}{\partial q}}_{\text{Équation différentielle}}$$

Conservation?

$$\ddot{q}_{n+1} = \dots$$

 \Rightarrow

$$\underbrace{\delta \sum_{k=1}^{n} h.\mathcal{L}\left(q_{k}, \dot{q}_{k+1}\right) = 0}_{\text{Discrétisation}}$$

Intégration géométrique

Intégration classique

$\underbrace{\delta \int_{a}^{b} \mathcal{L}(q,\dot{q}).dt = 0}_{a} \quad \Rightarrow \quad$

Conservation de l'énergie

∜

$$\underbrace{\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}}}_{\text{Équation différentielle}} = \frac{\partial \mathcal{L}}{\partial q}$$

Conservation ?

$$\ddot{q}_{n+1}=\ldots$$

 \Rightarrow

Intégration géométrique

∜

Intégration classique

Conservation ?

$$\underbrace{\underbrace{\partial}_{a} \int_{a}^{b} \mathcal{L}(q, \dot{q}) \cdot dt = 0}_{\text{Conservation de l'énergie}} \Rightarrow \underbrace{\underbrace{\frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}} = \frac{\partial \mathcal{L}}{\partial q}}_{\text{Équation différentielle}} \Rightarrow \underbrace{\underbrace{\ddot{q}_{n+1} = \dots}_{\text{Discrétisation}}$$

$$\underbrace{\delta \sum_{k=1}^{n} h.\mathcal{L} \left(q_{k}, \dot{q}_{k+1} \right) = 0}_{\text{Discrétisation}} \quad \Rightarrow \quad \underbrace{\ddot{q}_{n+1} = \dots}_{\text{Intégrateur}} \quad \approx \quad \text{Conservation}$$

Intégration géométrique

Espaces vectoriels

- + vitesse/moment
- espaces vectoriels uniquement

[Kharevych et al., 2006]

Espaces vectoriels

- + vitesse/moment
- espaces vectoriels uniquement

Groupes de Lie

- + adapté aux rotations
- intégrateurs implicites

[Kobilarov et al., 2009]

Espaces vectoriels

- + vitesse/moment
- espaces vectoriels uniquement

Groupes de Lie

- + adapté aux rotations
- intégrateurs implicites

[Kobilarov et al., 2009]

Partie 3: Animation physique

- 1. État de l'art
- 2. Modèle dynamique
- 3. Contraintes cinématiques

Intégration temporelle

- Adaptation des intégrateurs de groupes de Lie au modèle réduit AGP
- Equation du premier ordre:
 - position q
 - vitesse v
 - moment p
- Système non-linéaire :

$$\mathbf{v}_{k+1} = \phi(\mathbf{v}_{k+1})$$

Problème :

- ► Intégrateur *implicite*: $v_{k+1} = \phi(v_{k+1})$
 - Résolution difficile/lente

Problème :

- ► Intégrateur *implicite*: $v_{k+1} = \phi(v_{k+1})$
 - Résolution difficile/lente

Solution :

- Intégrateur *explicite*: $v_{k+1} = \widetilde{\phi}(v_k)$
 - Expliciter les forces d'inertie
 - Hypothèses $v_{k+1} \approx faible/constant$
 - Système linéaire : $Mv_{k+1} = f_k$

Intégrateur Euclidien

Intégrateur groupes de Lie

Moments linéaire et angulaire

Conditions d'expérience : impulsion initiale, pas de gravité

Partie 3: Animation physique

- 1. État de l'art
- 2. Modèle dynamique
- 3. Contraintes cinématiques

Système non-contraint :

$$Mv = f$$

Système contraint:

$$M \mathbf{v} = f + J^T \lambda$$

Contraintes cinématiques unilatérales : (e.g. contacts)

 $Jv \ge b$

Système contraint:

$$Mv = f + J^T \lambda$$

s.c. $0 \le Jv - b \perp \lambda \ge 0$

Contraintes cinématiques unilatérales : (e.g. contacts)

 $Jv \ge b$

 $J^T \lambda$: *impulsions* de contraintes
Système contraint :

$$Mv = f + J^T \lambda$$

s.c.
$$0 \leq Jv - b \perp \lambda \geq 0$$

Système contraint :

$$Mv = f + J^T \lambda \qquad \iff v = \underset{Jv \ge b}{\operatorname{argmin}} \quad \frac{1}{2} v^T Mv - f^T v$$

s.c. $0 \le Jv - b \perp \lambda \ge 0$ (QP convexe)

QP convexe: résolution itérative

Validation

Cooper's Hill Cheese-Rolling ©Will De Freitas

Animation physique

Résultats

Intégrateur Euclidien

Intégrateur groupes de Lie

Animation physique: bilan

- Dynamique pour le modèle réduit AGP
- Intégrateur explicite vitesse/moment
- Limites articulaires, amortissement (cf. manuscrit)

Travaux futurs:

- Autres hypothèses pour l'intégration explicite
- Métrique cinétique lors de l'AGP
 - Matrice M diagonale à la moyenne

1. Introduction

- 2. Modèle de postures par AGP, compression
- 3. Extension à l'animation physique
- 4. Contrôle du mouvement

5. Conclusion et travaux futurs

- Contrôleurs
 Proportionnel-Dérivée
 - + rapide
 - paramétrage difficile
 - aspect robotique

[Yin et al., 2007]

- Contrôleurs
 Proportionnel-Dérivée
 - + rapide
 - paramétrage difficile
 - aspect robotique
- Optimisation globale
 - + haut-niveau
 - très lent
 - extrêma locaux

[Liu et al., 2005]

État de l'art

- Contrôleurs
 Proportionnel-Dérivée
 - + rapide
 - paramétrage difficile
 - aspect robotique
- Optimisation globale
 - + haut-niveau
 - très lent
 - extrêma locaux
- Espace des tâches
 - + compromis

[Mordatch et al., 2010]

Problème d'optimisation à chaque pas de temps :

minimiser
$$\underbrace{\frac{1}{2} ||Cv - c||^2}_{\text{contrôle}}$$

- Contraintes "molles" :
 - Position centre de masse (CoM)
 - Moment angulaire (AM)
 - Position des pieds

Partie 4: Contrôle du mouvement

- 1. État de l'art
- 2. Avec forces externes
- 3. Sans forces externes

• $lpha \in [0,1]$: interpolation dynamique / objectifs cinématiques

• $\alpha \in [0,1]$: interpolation dynamique / objectifs cinématiques

QP convexe

• $\alpha \in [0,1]$: interpolation dynamique / objectifs cinématiques

- QP convexe
- Revient à ajouter des forces externes :

 $f_{\rm contrôle} \sim C^T C v - C^T c$

Manipulation interactive :

- $\blacktriangleright ~ \sim 150 \ \text{FPS}$
- $dt = 5.10^{-2}s$
- 12 géodésiques

Partie 4: Contrôle du mouvement

- 1. État de l'art
- 2. Avec forces externes
- 3. Sans forces externes

Sans forces externes

Utiliser uniquement les actionneurs du personnage :

$$v = \operatorname{argmin} \quad \frac{1}{2} ||Cv - c||^2$$

s.c. $Mv = f + \underbrace{J^T \lambda}_{\text{contacts}} + \underbrace{A^T \mu}_{\text{actionnement}}$
 $0 \le Iv - b \perp \lambda \ge 0$

$$\bullet \ A^T = \begin{pmatrix} \mathbf{0}_{6,k} \\ Id_k \end{pmatrix}$$

Sans forces externes

Utiliser uniquement les actionneurs du personnage :

$$v = \operatorname{argmin} \quad \frac{1}{2} ||Cv - c||^{2}$$

s.c. $Mv = f + \underbrace{J^{T}\lambda}_{\text{contacts}} + \underbrace{A^{T}\mu}_{\text{actionnement}}$
 $0 \le Jv - b \perp \lambda \ge 0$
 $\mu \in \mathcal{D}$
 $= \begin{pmatrix} 0_{6,k} \\ Id_{k} \end{pmatrix}$

• \mathcal{D} : limites des forces du personnage

 $\blacktriangleright A^T =$

Sans forces externes

Utiliser uniquement les actionneurs du personnage :

$$v = \operatorname{argmin} \quad \frac{1}{2} ||Cv - c||^{2}$$

s.c. $Mv = f + \underbrace{J^{T}\lambda}_{\text{contacts}} + \underbrace{A^{T}\mu}_{\text{actionnement}}$
 $0 \le Jv - b \perp \lambda \ge 0$
 $\mu \in \mathcal{D}$
 $0_{6,k}$
 Id_{k}

- \mathcal{D} : limites des forces du personnage
- Problème : contrainte de complémentarité non-convexe !
 - Relaxation de la contrainte

 $\blacktriangleright A^T = ($

Manipulation interactive :

- $\blacktriangleright ~ \sim 60 \ \mathrm{FPS}$
- ► $dt = 10^{-2}s$
- 14 géodésiques

Conclusion

Réduction de dimension pour l'animation de personnages :

- Paramétrage réduit par AGP
- Modèle physique, intégrateur explicite performant
- Contrôle du mouvement en espace des tâches

- AGP + physique : connexion avec l'analyse modale
- Caractérisation de mouvement, transitions de modèles AGP
- Solveur de contrôle plus robuste

Merci !

Géodésiques de SO(3) = courbes à axe/vitesse angulaire constants :

 $\gamma(t) = \exp(t.\omega) \in SO(3), \quad \omega \in \mathbb{R}^3$

Géodésiques

AGP

Parallèle ACP/AGP

Données

ACP AGP
$$(x_i)_{i \le m} \in \mathbb{R}^3$$
 $(x_i)_{i \le n} \in SO(3)$

Parallèle ACP/AGP

	ACP	AGP
Données	$(x_i)_{i\leq m}\in\mathbb{R}^3$	$(x_i)_{i\leq n}\in SO(3)$
Moyenne	$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i$	$\mu = \operatorname*{argmin}_{\mu \in SO(3)} \sum_{i=1}^{m} d^2(\mu, x_i)$

Parallèle ACP/AGP

	ACP	AGP
Données	$(x_i)_{i\leq m}\in\mathbb{R}^3$	$(x_i)_{i\leq n}\in SO(3)$
Moyenne	$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i$	$\mu = \operatorname*{argmin}_{\mu \in SO(3)} \sum_{i=1}^{m} d^{2}(\mu, \mathbf{x}_{i})$
Composantes / Géodésiques	$(v_j)_{j\leq 3} \in \mathbb{R}^3$	$(v_j)_{j<3} \in T_\mu SO(3)$

	ACP	AGP
Données	$(x_i)_{i\leq m}\in\mathbb{R}^3$	$(x_i)_{i\leq n}\in SO(3)$
Moyenne	$\mu = \frac{1}{m} \sum_{i=1}^{m} x_i$	$\mu = \operatorname*{argmin}_{\mu \in SO(3)} \sum_{i=1}^{m} d^{2}(\mu, x_{i})$
Composantes / Géodésiques	$(v_j)_{j\leq 3}\in \mathbb{R}^3$	$(v_j)_{j\leq 3}\in T_\mu SO(3)$
Reconstruction	$x_i = \mu + \sum_{j=1}^3 \alpha_{i,j}.v_j$	$x_i = \mu. \prod_{j=1}^3 \exp(\alpha_{i,j}.v_j)$

 $lpha_{i,j} \in \mathbb{R}:$ coordonnée de x_i sur la $j^{ ext{eme}}$ composante/géodésique

Interprétation géométrique: projection

$$Mv = f + J^T \lambda \qquad \iff v = \underset{Jv \ge b}{\operatorname{argmin}} \quad \frac{1}{2} v^T Mv - f^T v$$

s.c. $0 \leq Jv - b \perp \lambda \geq 0$

Correction (en vitesse) d'énergie cinétique minimale

Intégrateur Euclidien

Intégrateur groupe de Lie

Exemple : danse

Original

Géodésiques

Limites articulaires
- Limites habituellement formulées en angles d'Euler
- Difficile à intégrer à notre modèle
- Limites par mouvement difficiles à obtenir

- Apprentissage sur données MoCap
- Ajustement d'ellipsoïdes sur données d'orientations
 - Algorithme itératif
 - Invariant en coordonnées
- Contraintes cinématiques: $f(t, q, \alpha) \ge 0 \in \mathbb{R}$

Résultats

Sans limites articulaires

Avec limites articulaires

Arikan, O. (2006). Compression of motion capture databases. *ACM Trans. Graph.*, 25(3):890–897.

Beaudoin, P., Poulin, P., and Panne, M. v. d. (2007).
 Adapting wavelet compression to human motion capture clips.
 In GL 07: Proceedings of Graphics Interface 2007 pages

In *GI '07: Proceedings of Graphics Interface 2007*, pages 313–318, New York, NY, USA. ACM.

Brand, M. and Hertzmann, A. (2000). Style machines.

In SIGGRAPH '00: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, pages 183–192, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

Bibliographie II

- Fletcher, P. T., Lu, C., and Joshi, S. C. (2003). Statistics of shape via principal geodesic analysis on lie groups.
 In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2003 Proceedings CVPR-03, pages –95.
- Grochow, K., Martin, S. L., Hertzmann, A., and Popović, Z. (2004).
 Style-based inverse kinematics. ACM Trans. Graph., 23(3):522–531.
- Kharevych, L., Yang, W., Tong, Y., Kanso, E., Marsden, J. E., Schröder, P., and Desbrun, M. (2006).
 Geometric, variational integrators for computer animation.
 In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '06, pages 43–51,

Bibliographie III

Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

Kobilarov, M., Crane, K., and Desbrun, M. (2009).
 Lie group integrators for animation and control of vehicles.
 ACM Trans. Graph., 28(2):16–1.

Kry, P., Revéret, L., Faure, F., and Cani, M.-P. (2009). Modal locomotion: animating virtual characters with natural vibrations.

Comput. Graph. Forum, 28(2):289–298. Special Issue: Eurographics 2009.

Lee, J. and Shin, S. Y. (2002).

General construction of time-domain filters for orientation data.

IEEE Transactions on Visualization and Computer Graphics, 8(2):119–128.

Bibliographie IV

Liu, C. K., Hertzmann, A., and Popović, Z. (2005). Learning physics-based motion style with nonlinear inverse optimization.

In *ACM SIGGRAPH 2005 Papers*, SIGGRAPH '05, pages 1071–1081, New York, NY, USA. ACM.

- Liu, G. and McMillan, L. (2006).
 Segment-based human motion compression.
 In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, SCA '06, pages 127–135, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
- Moakher, M. (2002).

Means and averaging in the group of rotations. *SIAM J. Matrix Anal. Appl.*, 24(1):1–16.

Bibliographie V

Mordatch, I., Lasa, M. d., and Hertzmann, A. (2010). Robust physics-based locomotion using low-dimensional planning.

ACM Transactions on Graphics, 29(3).

Pennec, X. (2006).

Intrinsic statistics on riemannian manifolds: Basic tools for geometric measurements.

Journal of Mathematical Imaging and Vision, 25(1):127.

 Safonova, A., Hodgins, J. K., and Pollard, N. S. (2004).
 Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces.
 In ACM SIGGRAPH 2004 Papers, SIGGRAPH '04, pages 514–521, New York, NY, USA. ACM.

Bibliographie VI

Sommer, S., Lauze, F., and Nielsen, M. (2010). The differential of the exponential map, jacobi fields and exact principal geodesic analysis. <i>CoRR</i> , abs/1008.1902.
Tresch, M. C. and Jarc, A. (2009). The case for and against muscle synergies. <i>Curr. Opin. Neurobiol.</i> , 19(6):601–7.
Unuma, M., Anjyo, K., and Takeuchi, R. (1995). Fourier principles for emotion-based human figure animation.
In SIGGRAPH '95: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pages 91–96, New York, NY, USA, ACM,

Ye, Y. and Liu, C. K. (2008).

Animating responsive characters with dynamic constraints in near-unactuated coordinates.

In *ACM SIGGRAPH Asia 2008 papers*, SIGGRAPH Asia '08, pages 112–1, New York, NY, USA. ACM.

Yin, K., Loken, K., and van de Panne, M. (2007).
 Simbicon: simple biped locomotion control.
 In SIGGRAPH '07: ACM SIGGRAPH 2007 papers, page 105, New York, NY, USA. ACM.